Algebra 2

7.1 Inverse Variation

Variations

- Direct Variation _______
 - \circ $x \uparrow, y \uparrow$
- Inverse Variation ______
 - \circ $x \uparrow, y \downarrow$
- *a* is the ______ of variation

What type of variation is each of the following?

$$xy = 48$$

$$2y = x$$

$$y = 2x + 3$$

$$y = \frac{2}{r}$$

Checking data for variation

- 1. Look at the _____
- 2. If *y* ______ as *x* increases, check _____ variation
- 3. If *y* ______ as *x* increases, check _____ variation
- 4. Plug each of the _____ in one of the variation equations to find _____
- 5. If the *a* stays the _____, the data has that type of variation

What type of variation?

X	2	4	8
y	8	4	2

Solving Variations

- 1. Write the equation in ______ stated.
- 2. "Varies" means "_____"
- 3. Plug in *x* and *y* to find _____
- 4. Plug in _____ and the other ____ and solve

y varies inversely as x. When x = -3, y = 8. Write an equation relating x and y. Then find y when x = 3.

y varies inversely as x. When $x = 5$, $y = -4$. Write an equation relating x and y. Then find y when $x = 3$.		
The time t (in hours) that it takes a group of roofers to roof a house varies inversely with the number n of roofers. It takes a		
group of 4 roofers 9 hours to roof the house. How long does it take 6 roofers to finish the house?		

359 #1-25 odds, 26, 31, 35, 39, 45, 47, 49 = 20

Algebra 2 7-01

Name: _____